Répertoire du corps professoral
Chengkai Fan
Professeur adjoint
chengkai.fan@gmn.ulaval.ca
Pavillon Adrien-Pouliot
1065, avenue de la Médecine
Local 1902
Publications des 5 dernières années
Machine learning with SHapley additive exPlanations for evaluating mine truck productivity under real-site weather conditions at varying temporal resolutions International Journal of Mining, Reclamation and Environment, 2024/11/25. Chengkai Fan, Chathuranga Balasooriya Arachchilage, Na Zhang, Bei Jiang, Wei Victor Liu. DOI 10.1080/17480930.2024.2348877
Hybrid extreme gradient boosting regressor models for the multi-objective mixture design optimization of cementitious mixtures incorporating mine tailings as fine aggregates Cement and Concrete Composites, 2024/11. Chathuranga Balasooriya Arachchilage, Guangping Huang, Jian Zhao, Chengkai Fan, Wei Victor Liu. DOI 10.1016/j.cemconcomp.2024.105787
Machine learning-assisted characterization of the thermal conductivity of cement-based grouts for borehole heat exchangers Construction and Building Materials, 2024/10. Jian Zhao, Chengkai Fan, Guangping Huang, Yunting Guo, Chathuranga Balasooriya Arachchilage, Rajender Gupta, Wei Victor Liu. DOI 10.1016/j.conbuildmat.2024.138506
Deep Neural Network Models for Improving Truck Productivity Prediction in Open-pit Mines Mining, Metallurgy & Exploration, 2024/04. Omer Faruk Ugurlu, Chengkai Fan, Bei Jiang, Wei Victor Liu. DOI 10.1007/s42461-024-00924-4
Using deep neural networks coupled with principal component analysis for ore production forecasting at open-pit mines Journal of Rock Mechanics and Geotechnical Engineering, 2024/03. Chengkai Fan, Na Zhang, Bei Jiang, Wei Victor Liu. DOI 10.1016/j.jrmge.2023.06.005
Forecasting unconfined compressive strength of calcium sulfoaluminate cement mixtures using ensemble machine learning techniques integrated with shapely-additive explanations Construction and Building Materials, 2023/12. Chathuranga Balasooriya Arachchilage, Guangping Huang, Chengkai Fan, Wei Victor Liu. DOI 10.1016/j.conbuildmat.2023.134083
A machine learning model to predict unconfined compressive strength of alkali-activated slag-based cemented paste backfill Journal of Rock Mechanics and Geotechnical Engineering, 2023/11. Chathuranga Balasooriya Arachchilage, Chengkai Fan, Jian Zhao, Guangping Huang, Wei Victor Liu. DOI 10.1016/j.jrmge.2022.12.009
Effects of site operating conditions on real site TKPH (tonne-kilometer-per-hour) of ultra-large off-the-road tires Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2023/04/03. Shaosen Ma, Chengkai Fan, Wei Victor Liu. DOI 10.1177/09544070231166166
Weighted ensembles of artificial neural networks based on Gaussian mixture modeling for truck productivity prediction at open-pit mines Mining, Metallurgy & Exploration, 2023/04. Chengkai Fan, Na Zhang, Bei Jiang, Wei Victor Liu. DOI 10.1007/s42461-023-00747-9
Preprocessing large datasets using Gaussian mixture modelling to improve prediction accuracy of truck productivity at mine sites Archives of Mining Sciences, 2022/12/27. Chengkai Fan, Na Zhang, Bei Jiang, Wei Victor Liu. DOI 10.24425/AMS.2022.143680
Prediction of truck productivity at mine sites using tree-based ensemble models combined with Gaussian mixture modelling International Journal of Mining, Reclamation and Environment, 2022/11/03. Chengkai Fan, Chengkai Fan, Na Zhang, Bei Jiang, Wei Victor Liu. DOI 10.1080/17480930.2022.2142425
Strain characteristics and permeability evolution of faults under stress disturbance monitoring by fibre bragg grating sensing and pressure pulses Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2021/11. Lifeng Xu, Qi Li, Simon A. Mathias, Yongsheng Tan, Duoxing Yang, Chengkai Fan. DOI 10.1007/s40948-021-00289-8
A critical review of distributed fiber optic sensing for real-time monitoring geologic CO2 sequestration Journal of Natural Gas Science and Engineering, 2020/12/13. DOI 10.1016/j.jngse.2020.103751
Les informations contenues dans cette page sont extraites de différents systèmes experts de l’Université Laval. Si vous constatez une erreur ou avez des questions quant aux données affichées, communiquez avec nous en écrivant à l’adresse repertoire-corps-professoral@ulaval.ca. Nous nous assurerons de rediriger votre demande à la bonne personne.